Biography (略歴)

2001年東京大学機械情報工学専攻修士修了.2005年工学博士(東京大学).2001年東京慈恵会医科大学医学部,助教を経て07年よりINRIA(フランス国立情報学自動制御研究所)博士研究員.08年より同常勤研究員,12年よりCR1ファーストクラス研究員.モンペリエ大学ロボティクス専攻(LIRMM)兼任および理化学研究所BSI-トヨタ連携センター客員研究員.15年HDR(フランス教授資格の学位).17年より東北大学工学研究科ロボティクス専攻教授および医工学研究科教授としてニューロロボティクスラボを主宰.2022年から24年までImperial College London客員教授.運動制御や学習理論を用いたニューロロボティクスなどの研究に従事.

Dr. Mitsuhiro Hayashibe is a Professor at the Department of Robotics, Graduate School of Engineering, Tohoku University, Japan, and founder of the Neuro-Robotics Lab since 2017. He is concurrently with the Graduate School of Biomedical Engineering, Tohoku University. He obtained PhD at University of Tokyo in 2005, and the Habilitation degree at University of Montpellier in 2015. He was previously an Assistant Professor with the Department of Medicine, Tokyo Jikei University School of Medicine (東京慈恵会医科大学医学部) for 2001-2006, and a Tenured Research Scientist with INRIA (Institut National de Recherche en Informatique et en Automatique, フランス国立情報学自動制御研究所) and University of Montpellier, France for 2008-2017. He has been a visiting researcher at RIKEN Center for Brain Science and TOYOTA Collaboration Center (理化学研究所 脳神経科学研究センター) since 2012, also at EPFL (École Polytechnique Fédérale de Lausanne, スイス連邦工科大学ローザンヌ校) for 2016 with Swiss National Science Foundation grant. He is co-chair of IEEE Robotics and Automation Society Technical Committee on Human Movement Understanding. He was awarded with the 15th Annual Delsys Prize 2017 for Innovation in Electromyography from De Luca Foundation, USA.

Selected publications:

  1. Motor Synergy Development in High-performing Deep Reinforcement Learning algorithms, IEEE Robotics and Automation Letters, April 2020, 5(2):1271-1278, Jiazheng Chai, M. Hayashibe
  2. Discovering Interpretable Dynamics by Sparsity Promotion on Energy and the Lagrangian, IEEE Robotics and Automation Letters, April 2020, 5(2):2154-2160, Hoang K. Chu, M. Hayashibe
  3. Identification of Time-Varying and Time-Scalable Synergies From Continuous Electromyographic Patterns, IEEE Robotics and Automation Letters, (2019),
    4(3):3053-3058, Felipe M. Ramos, Andrea d’Avella, M. Hayashibe
  4. Muscle Fatigue Induced Hand Tremor Clustering in Dynamic Laparoscopic Manipulation, IEEE Transactions on Systems, Man, and Cybernetics: Systems, (2019), S. Chandra, M. Hayashibe, A. Thondiyath
  5. Synergetic Learning Control Paradigm for Redundant Robot to Enhance Error-Energy Index, IEEE Transactions on Cognitive and Developmental Systems, (2018), 10(3):573-584, M. Hayashibe, S. Shimoda
  6. Automatic Human Movement Assessment with Switching Linear Dynamic System: Motion Segmentation and Motor Performance, IEEE Transactions on Neural Systems & Rehabilitation Engineering, (2017), 25(6):628-640, Roberto de Souza Baptista, Antonio P. L. Bo, Mitsuhiro Hayashibe
  7. A Synergetic Brain-machine Interfacing Paradigm for Multi-DOF Robot Control, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46, 7, (2016), 957-968. S. Bhattacharyya, S. Shimoda and M Hayashibe
  8. Evoked Electromyography-Based Closed-Loop Torque Control in Functional Electrical Stimulation, IEEE Transactions on Biomedical Engineering, vol.60, no.8, (2013), 2299-2307. Q. Zhang, M. Hayashibe, C. Azevedo-Coste
  9. M. Hayashibe, Q. Zhang, D. Guiraud, C. Fattal, “Evoked EMG based Torque Prediction under Muscle Fatigue in Implanted Neural Stimulation”, Journal of Neural Engineering, vol.8, 064001,2011.